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The classical Biot theory [J. Acoust. Soc. Am. 28, 168 (1956)] predicts the existence of three
waves that can propagate in a fluid-saturated porous material: A fast compressional wave, a slow
compressional wave, and a shear wave. Through use of this theory, propagation characteristics
within water-filled and air-filled materials were compared in the 10 Hz-100 kHz band.
Numerical calculations show that the ratio of fluid to solid motion for the slow compressional
wave is around 2 in water-filled sand, but greater than 300 in air-filled sand. In addition,
calculations of plane wave transmission from a fluid into a fluid-saturated porous solid were
investigated. The calculations show that when the fluid is water, nearly all of the incident energy
is transferred to the reflected wave and to the transmitted fast compressional wave that is
traveling mainly in the solid frame. Only a slight frequency dependence occurs in the energy
transfer. When the fluid is air, however, the interaction of the waves with the boundary becomes
strongly dependent upon frequency, and most of the incident energy is transferred to the
reflected wave and to the transmitted slow compressional wave traveling mainly in the pores.
These theoretical results justify the different approaches used to treat reflections from porous
materials in underwater and acroacoustics. For reflections, air-filled soil or snow can be
approximately modeled as a modified fluid (ignoring motion in the frame) rather than as a
viscoelastic solid (ignoring motion in the pores), the approximation commonly used to model

saturated undersea sediments.

I. INTRODUCTION

Although elastic or viscoelastic wave theory has
proved to be very useful for many applications in seismol-
ogy and acoustics, there are problems involving porous
materials where such treatment is not appropriate, and
consideration must be given to both the fluid and solid
phases of the material. Biot'™ developed a theory of wave
propagation based upon a macroscopic averaging that al-
lows calculations to be made for porous materials.

In Biot’s theory, the porous material is treated as a
solid frame or matrix filled with a viscous fluid. By exam-
ining the coupling between the two phases and by averag-
ing over a volume containing many pores. Biot derived
constitutive equations governing this material. The volume
average limits the theory to wavelengths that are much
greater than the pore size, which is the case considered
here. These constitutive equations were used to examine
small amplitude motions; solutions from the resulting wave
equations correspond to two compressional waves and one
shear wave propagating in the porous material. For all
three of these waves, the motion of the fluid and solid
phases are coupled.

Biot’s theory has been previously applied to two dis-
tinct applications that will be discussed and compared in
this article. The first application is to wave propagation
and attenuation in undersea sediments, which has been

» An earlier version of this article was presented at the 120th Meeting of
the Acoustical Society of America, San Diego, CA, 26~-30 November,
1990. J. Acoust. Soc. Am. 88. S121 (1990).
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investigated by a number of researchers.*!! The second
application is to problems in aeroacoustics and acoustic-
to-seismic coupling.'?”!” The porous material is saturated
with water in the first case and with air in the second. The
differences in the two cases are caused mainly by the con-
trast in the fluid bulk modulus relative to the frame bulk
and shear moduli, and will be discussed later. These weak
frame (corresponding to water-saturated media) and stiff
frame (air-saturated media) limits have been previously
examined by Geertsma and Smit'® and by Johnson and
Plona."

Biot’s theory is briefly outlined in the next section.
Plane wave solutions are then derived, and the relationship
between the fluid and solid motions are investigated. Sec-
tion III discusses the reflection and transmission of plane
waves across a fluid/porous solid interface. Here, major
differences between water- and air-filled media are found,
which justify the quite different approaches sometimes
used to perform approximate calculations for the two
cases. A summary follows.

il. SUMMARY OF BIOT’'S THEORY
A. Equations of motion

With reference to a right-handed Cartesian coordinate
system, letting u represent the displacement of the solid
frame, U the displacement of the fluid, Q) the porosity, and
w={(u—U) the fluid displacement relative to the frame,
Biot® derived the constitutive equations

0,;=2pe;+ [ (H—2u)e—CE18;; (1)
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where o;; are the components of stress, ¢;; are the compo-
nents of the strain tensor, u is the complex shear modulus
of the skeletal frame, H and C are complex moduli, e=V +u
is the volumetric strain of the solid, {=V-w is the incre-
ment in fluid content, and §; 7 is the Kronecker delta. Com-
paring this stress-strain relation with that for an isotropic

elastic medium

0;;=2ue;i+Eed;; (2)

(where £ is the Lamé parameter) shows that the forms are
similar, with additional complex moduli introduced to de-
scribe the effect of the fluid-filled pores. Stoll and Bryan®
give expressions for calculating values of the Biot moduli
and C (and M which appears below) from the bulk moduli
of the solid and fluid components of the porous material
and the frame bulk modulus (K,). The values of the solid
particle density p, and solid particle bulk modulus K| are
required, along with the fluid density p s, bulk modulus K,
and kinematic viscosity v. For the skeletal frame, the po-
rosity Q, zero-frequency permeability k, tortuosity «,
shear modulus G, and Poisson’s ratio # must be given. The
frame bulk modulus K, is then estimated using the relation
K,=G[(2/3)+2n/(1—2n)]. Johnson et al?' showed that
these parameters can be measured independently, and that
Biot’s theory then correctly predicts the acoustic behavior
of porous materials.

Viscoelastic losses are incorporated in the theory by
specifying a value for the loss decrement §, and by replac-
ing, e.g., the shear modulus by a complex modulus u=G(1
+1i8), where i=(—1)"2 In this poroviscoelastic model,
all of the moduli become complex and frequency depen-
dent.??

Using the constitutive Eq. (1), Biot derived the cou-
pled equations of motion

pV2u+ (H—p)Ve—CV¢E=pdiu—p, dw, (3)

v
CVe—MVi=p, afu—'(apf/ﬂ)afw—%- F(o)dw,
0
(4)

where M is a complex modulus, p is the average density,
and F(w) is a frequency-dependent correction to the vis-
cosity. In past work, simple pore geometries (e.g., cylin-
drical tubes or slits) have been assumed, and analytical
expressions for have been derived and used for F (w)."12

Recently, the theory of the dynamic response of a fluid
in a porous medium has been advanced and generalized
using the concepts of dynamic permeability and tortuos-

ity.2*?* Using this theory and assuming ¢’ time depen-
dence, Eq. (4) becomes
CVe—MVE=p,du—[pa(w)/Q]ow
zpfafu—m’afw, (5)
with m'= p,d(w)/Q = (p/V)al— MQF(w)/

(p skow)}, and where &(w) is the dynamic tortuosity given
by
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a(w)=a—i(nQ/wkyp ) F(w)
=a[l—i{w/w.)F(w)], (6)

and F(w) is

F(o)=[1+i(4a’ ki p, 0/nQ*A) ]2
=[1+8N(w/w) ]~ (7)

In the above equations, the dynamic viscosity of the fluid is
represented by n=pv. Also, a parameter N=_8aky/
(©2A?) has been introduced, along with a characteristic
frequency® w,=nQ/(p rkoat); the frequency at which the
viscous skin depth becomes about equal to the pore size.
For frequencies below w,, viscous effects dominate the flow
in the porous medium, while for frequencies above w,, in-
ertial effects are more important. The characteristic length
A can be determined from a flow-velocity weighted pore-
volume-to-surface ratio [see Eq. (2.17) of Ref. 23]. For
smoothly varying pore geometries, the dynamic tortuosity
can be accurately represented by the scaled analytical so-
lution for a cylindrical tube.*?° For most porous media,
N ~1, the value assumed here.?*?’

For air-saturated porous materials, temperature effects
cause the fluid bulk modulus to be frequency dependent,
and Champoux and Allard®® have derived expressions ac-
counting for these effects, which have been incorporated
into the calculations presented here.

B. Propagation of plane waves

The solid and fluid displacements can be represented
by scalar and vector potentials

u:V¢s+VX¢s’ (8)

W=V¢f+v><ll}f, 9

with = (0,1,0). We first examine curl-free motion by set-
ting the 3 terms to zero and substitute these potentials into
Egs. (3) and (5). This process leads to the coupled wave
equations

HY 2$—CV % ;= p 37;6,— p 3, (10)

CV 26— MV *¢ ;= p B8id—m'd4 . (1D

Next, by substituting in the plane wave potentials ¢,
=A;expli(wt—k-r)] and ¢,= B;exp[i(wt—k-1)], Egs.
(10) and (11) reduce to

sz—pa)2
Ck2_ pwa

¢ [o
és] |0
This system of equations has solutions when the determi-
nant of the 2 X2 matrix is zero. Writing out this determi-

nant leads to a quadratic expression in k*=k - k, which has
two solutions for the complex wave number k. This result

p/w?.__ CkZ

m'o*— Mk? ' (12)
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TABLE 1. Input parameters used in the calculations, and derived properties of the porous media.

Input parameters for sand

Density of solid grains p(kgm™) 2650
Bulk modulus of solid grains K, (Pa) 3.6x10'°
Shear modulus of frame u (Pa) 5% 107
Poisson’s ratio n 0.33
Porosity Q 0.3
Permeability ko ( m?) 1x10~1°
Loss decrement ) 0.02
Tortuosity a 1.25
Input parameters for the fluids Water Air
Density pr (kgm™) 1000 1.2
Bulk modulus K, (Pa) 23x10° 1.3x10°
Kinematic viscosity v (m?s™ 1) 1x10~¢ 1.45% 103
Calculated properties of the porous media Sand/water Se 1d/air
Density plkgm™3) 2155 1855
Bulk modulus of frame - K, (Pa) 1.3%x 108 1.3%x10®
P, wave velocity Re(p;) (ms™!) 1911 328
S wave velocity Re(v;) (ms™!) 152 164
Critical frequency fe=w/ 27 (Hz) 380 5540

shows that there are two propagating compressional waves,
with different propagation velocities, that are termed com-
pressional waves of the first and second kinds and are de-
noted by P, and P, Plona®' experimentally confirmed

|

,{—(m"H+pM—2p C)+ [(m'H—pM)*+4(p H—m'C) (pM—m’C)]'"?}

Biot’s theory by observing the two predicted compressional
waves. Yamamoto® [Eq. (10)] gives explicit expressions for
these wave velocities. The wavenumbers for the two com-
pressional waves, k, and k,, are given by the expression

2 _
kip=e 2(C—HM)

Setting the scalar potentials ¢ to zero in Egs. (8) and
(9), substituting into Egs. (3) and (5), and substituting
plane wave potentials for i leads to

2, k2 2 0
@ p—H “”’f] ¢Sl=[0], (14)
f

w’p —o*m'| |

where the subscript 3 is used to identify shear wave param-
eters. Setting the determinant of the matrix to zero leads to
a linear equation in k%, with a single solution

k=[1—(p5/pm’)e’p/p. (15)

Displacements induced in the solid and fluid phases of
the porous medium are coupled to one another, i.e., a dis-
turbance propagating in the solid matrix induces a dis-
placement in the pore fluid (even for shear waves), and
similarly a disturbance in the pore fluid induces one in the
solid matrix. The relation between the motion in the solid
and fluid phases is related to the displacement potential
ratios (B;/A;) for the compressional and shear waves.
These ratios can be derived by substituting the plane wave
potentials into the wave equations and leads to the expres-
sions
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. (13)
I
B,~/A,=(Hlk,-|2—pa)2)/(C|k,-|z—p/wz), i=1,2,
(16)
for the two compressional waves and
By/As=(p/py) — (p|ks|*/ py ) (17)

for the shear waves. Using Egs. (16) and (17), the fluid to
solid displacement amplitude ratios can be calculated from
the expression

U/u=1—[B/(Q4)]. (18)

To investigate the differences between wave propaga-
tion in water- and air-filled porous media, the predicted
wave propagation characteristics of sand are calculated.
The physical parameters used in these calculations are
given in Table I; the values for sand and sea water were
taken from Yamamoto.’

Figure 1 (top) shows the predicted velocity of the
three wave types (P, P,, and S) in water-filled sand as a
function of frequency. Both the P, and S wave speeds are
essentially independent of frequency. The velocity of the P,
wave is less than that of the P, wave, so these waves are
sometimes called the slow and fast compressional waves,
respectively. The P, wave velocity increases as the fre-
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FIG. 1. Velocity and attenuation predicted by the Biot theory for the
three types of waves in water-filled sand. The assumed sand and water
properties were taken from Yamamoto (see Ref. 9) and are listed in Table
1. Solid lines are plotted for the P; (fast compressional) wave, long
dashed lines for the P, (slow compressional) wave, and short dashed lines
for the § (shear) wave. Small triangles mark the frequencies 10, 102, 10°%,
10%, 10%, and 10° Hz. (Top) Velocity normalized by the fluid velocity
c¢=1517 ms~" as a function of the normalized frequency o/w .. (Bot-
tom) Dimensionless attenuation parameter Q as a function of frequency.
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FIG. 2. Fluid/solid displacement ratios predicted by the Biot theory for
the three waves in a water-filled sand. Same lines assignments as in Fig. 1.
(Top) Amplitude ratios. (Bottom) Phase of the ratios in radians. A
positive phase corresponds to the fluid motion lagging behind the solid
motion.
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quency increases until @ =, ( f =400 Hz), after which it
remains constant and slightly greater than the .S wave ve-
locity as the frequency increases. '

The wave attenuations are also shown in Fig. 1 (bot-
tom) in terms of the quality factor Q=Real(v)/[2
Imag(v)], where v is the phase velocity. If Q is constant
with respect to frequency, a situation commonly assumed
in seismology, then the losses are also constant with respect
to wavelength and the spatial attenuation constant B, in the
term e ?7, increases as f increases. For the P; and S
waves, the attenuation maxima occur near o ~w, (where Q
is a minimum). For the P, wave, the attenuation is very
large at low frequencies, decreases to a value of Q=1 at
about w~w,, and continues to decrease as the frequency
increases. Values of Q less than 1 imply that the wave is not
a true propagating wave because the attenuation is so large;
it is a diffusion at these frequencies. The value o =, is
where the viscous drag and the inertial losses are approx-
imately equivalent, and where the P, wave becomes a prop-
agating rather than a diffusive wave.

As Yamamoto® points out, the general behavior of the
material remains the same if the permeability k, changes.
Although changing k; causes a shift in frequency, the ve-
locities and attenuations remain constant at constant o/@,.

Figure 2 shows the ratio of the fluid to solid displace-
ment amplitudes calculated using Eqs. (16)—(18) for the
three wave types in the water-filled sand. For P; and §
waves, the fluid/solid displacement ratios (U/u) are equal
at low frequencies. As the frequency increases beyond
0.1w,, the fluid displacement amplitude increases for the P
wave, becoming twice as large as the solid displacement at
high frequencies. For the shear wave, the fluid displace-
ment decreases to about i of the solid displacement. For
both of these waves, the fluid and solid motions remain in
phase, except for a slight deviation near w,, where the fluid
motion leads the solid (by about 18°) for the P, wave, and
lags behind (by about 30°) for the shear wave. The ratio
for the P, wave is nearly constant and has a value of 2.4.
For this wave the fluid and solid components of motion are
180° out of phase.

Figure 3 shows the predicted velocities and attenua-
tions for the three wave types for the same sand, but air
filled rather than water filled. Table I gives the values used
for air. Once again, the P, and S wave velocities are essen-
tially constant with respect to frequency. The P, velocity
again increases with frequency, but approaches the Py ve-
locity (not the S velocity as in the previous example) at
high frequencies. The P, and S waves are not affected by
viscous attenuation, as Q is constant for these waves, im-
plying that f3 is proportional to f. The slow wave is very
highly attenuated at low frequencies, and less attenuated
above w~w,, where it becomes a true propagating wave.
One consequence of replacing the water with air is to shift
the “critical” value of w=~w, to a much higher frequency
(5.5 kHz), because of the higher kinematic viscosity for
air.

The fluid/solid displacement ratios for the air-filled
sand are shown in Fig. 4. The behavior of these ratios as a
function of frequency is similar to that of water-filled sand.
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FIG. 3. Velocity and attenuation predicted by the Biot theory for the
three types of waves in air-filled sand. The assumed sand properties are
the same as for the previous example (taken from Yamamoto, see Ref. 9),
and are listed along with the. air properties in Table I. Same line assign-
ments as in Fig. 1. Small triangles mark the frequencies 10, 10%, 10°, 10°,
10°, and 10° Hz. (Top) Velocity normalized by the fluid velocity ¢=329
m s~ as a function of the normalized frequency w/w.. (Bottom) Dimen-
sionless attenuation parameter Q as a function of frequency.
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FIG. 4. Fluid/solid displacement ratios predicted by the Biot theory for
the three waves in a air-filled sand. Same line assignments as in Fig. 1.
(Top) Amplitude ratios. (Bottom) Phase of the ratios in radians. A
positive phase corresponds to the fluid motion lagging behind the solid
motion.
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FIG. 5. A plane compressional wave incident from a fluid onto a fiuid-
saturated porous medium. The displacement potential amplitudes for
each of the waves are indicated on the figure. Subscripts i and r denote the
incident and reflected waves in the fluid; subscripts 1, 2, and 3 refer to the
fast compressional, slow compressional, and shear waves in the porous
solid. @ is the angle of incidence.

The major difference is that the ratio is now ~ 2000 for the
P, wave, compared to 2.4 when the sand was water filled.
Thus, this wave propagates mainly through the pores, as if
the solid were rigid, when the sand is air-filled. The P,
wave is still coupled to the solid as its high attenuation
shows. There is also a decrease in the ratio for P, waves to
~340 as w/w, increases beyond 1. The phase behavior of
the ratio for all three waves is similar to the behavior found
for the water-filled sand, with the P, and shear wave mo-
tions in phase and the P, motions out of phase. At w =~ a,,
the P; fluid motion leads the solid motion by nearly 45°,
while the shear and P, waves have phase lags of around
30°.

11l. REFLECTION AND TRANSMISSION OF PLANE
WAVES AT A FLUID/POROUS SOLID INTERFACE

In this section, the interaction of a plane wave incident
from a fluid onto a porous solid is investigated (Fig. 5).
Deresiewicz and Skalak®? were apparently the first to dis-
cuss the boundary conditions at an interface. Following
Stoll and Kan,’ we introduce wave potentials and write the
boundary conditions in terms of them. In the fluid, we
assume a downgoing compressional wave at an angle of 0
from the vertical. The wavenumber in the fluid is & = w/c,
with ¢ the velocity in the fluid, and the vertical and hori-
zontal wavenumbers are k,=k,cos§ and k,=k,sin 0.
The incident and reflected wave potentials in the fluid are

¢;=A;expli(w t—kscos 0-z—k.x)], (19)
¢,=A, exp[i(w t+kscos -z—k.x)], (20)

while in the porous material. the potentials are
Donald G. Albert 32



d.=A, expli(w t—ky,z—kx)]
+A, expli(w t—ky, z—kx) ], (21)

ér=B, expli(wt—kyz—k,x)]

+ By expli(o t—ky, z—kx)1, (22)
bo=A; expli(w t—ky, z—k.x)], (23)
=By expli(w t—ks, z—kx) |- (24)

1

-

k ;cos 8 B,
f e —

k,cos @ 2
S pro B,
Y 0 T L P[RR
i 21—

—pfw p Cz)2 B

0 ! (;1—1M—C)(ki+k%z)
1
LO 2k k1,

and are solved numerically using LINPACK subroutines.*

Dutta and Ode* have presented a clear discussion of
the energy partitioning at a boundary between two porous
media, and were the first to point out the existence of
interference fluxes of energy between the three types of
waves. Energy coefficients for water-saturated porous ma-
terials have also been calculated by Wu et al.*® Following
Dutta and Ode’s™* development, the energy reflection and
transmission coefficients are defined as

R=Fy/Fy, (26)
T,=F/F; i=123, (27)
where the z component of the energy fluxes are defined as

[0

2n/w .
Fi= (—) [ Retppre(@inat (28)
2T 0

for the incident wave in the fluid,

2/ .
FRZ(E_) J- Re(pr)Re(Uzr)dt (29)
2 0

for the reflected wave in the fluid, and

e ®
i (271')

+Re(p)Re(wy)]dr, =123, (30)

2/ w
J [Re (0 Reiiy) -+ Re(0,) Reiiz)
0
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Here, the subscripts 1, 2, and 3 stand for the P, P,, and S
waves with solid motion potential amplitudes 4, fluid mo-
tion potential amplitudes Bj, and vertical wavenumbers k.
Phase continuity in accordance with Snell’s law is incor-
porated in the above expressions, so the horizontal wave-
numbers for all of the waves are equal (k).

The boundary conditions for the fluid/solid interface
are the continuity of normal fluid displacement, normal
traction, fluid pressure, and tangential traction. These
boundary conditions are written in matrix form as

1

B, B
ky | 1——= _ 3
2( AZ) kx(l As)

A

B, 2 2 2 ’

P2, —2uk ks, 4
(Azc H)(kx+k22)+2ukx uhokss | A; 25)
B 0 A
(—ZM—C) (R4 K2) ’

A4,
2kxk22 ki—k%z )

—

for the waves in the porous medium. The interference
fluxes are defined as

w
(57

+Re(0,;;)Re(iy) +Re(oy;) Re(u,)

27/0w
f [Re(o,,)Re(,)) +Re(o)Re (i)
0

+Re(p)Re(i,)) +Re(pRe(wy)d1,
i=1,2,3. (31)

With these definitions, the energy balance across the inter-
face is expressed as

1—R=T11—|-T22+T33+T12+T13+T23. (32)

Figures 6 and 7 show three-dimensional views of the
energy coefficients for the water- and air-filled sands as a
function of incident angle and frequency. For the water/
water-saturated sand boundary, all of the coefficients, ex-
cept for transmission to the slow compressional P, wave,
show only slight variations with frequency (Fig. 6). The
reflection coefficient is about 0.2 at normal incidence and
increases to 1.0 at grazing incidence, where all of the trans-
mission coefficients decrease to zero. The transmission co-
efficient into P, (fast compressional) waves is around 0.8 at
low angles of incidence and is always two or three orders of
magnitude larger than the other two transmission coeffi-
cients. Transmission into P, waves is the only conversion
that shows a large frequency dependence. At normal inci-
dence, this coefficient increases by a factor of 4 from 10 to
10° Hz, while the shear wave transmission coefficient is
always zero. From this figure, we see that nearly all of the
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FIG. 6. Three-dimensional view of the reflected and transmitted energy coefficients for a plane wave incident on a water/water-filled sand interface. 0°
correspends to an angle of incidence normal to the fluid/porous solid boundary. The frequency axis is logarithmic, with a range from 10 to 10° Hz. (a)
shows the ratio R of the vertical energy flux in the reflected wave to the vertical energy flux in the incident wave in the fluid, (b) shows the energy flux
ratio T'j; for the transmitted P, wave, (c) shows the energy flux ratio T, for the transmitted P, wave, and (d) shows the energy flux ratio 7’5 for the
transmitted S wave. Note that some of the displays have been rotated to give a clear view of the surface.

transmitted energy is converted into P; waves in the porous
solid, with only minute amounts ( <0.5%) converted into
P, or S waves. The only significant frequency dependence
resides in a coefficient that is always small, so the overall
response is essentially independent of frequency.

Figure 7 shows the energy coeflicients for a plane wave
in air incident upon a boundary with air-filled sand, and
there are two major differences in comparison with the
previous case where water was the fluid. First, all of the
coefficients exhibit some frequency dependence. The P,
transmission coefficient still increases with frequency, but
now the reflected and S transmission coefficients decrease
with frequency. The reflection coefficient decreases from
nearly 1.0 at 10 Hz to about 0.4 at 10° Hz for normal
incidence. The second difference is that the P, transmission
coefficient is now the largest, not the P;. The P, and §
waves account for at most 2.3% and usually less than 1%
of the energy incident upon the boundary. For air-filled
sand, most of the transmitted energy will be converted into

34 J. Appl. Phys,, Vol. 73, No. 1, 1 January 1993

.cation in this situation.

P, waves, not P, waves as was the case for water-filled
sand.

These examples show why quite different approxima-
tions can be used to treat reflections from the fluid/porous
solid boundary in underwater and aeroacoustics. For
water-filled porous materials, the P, wave can often be
ignored, since it is of small amplitude. The main effect of
the pores is on the P| and S wave attenuations (see Fig. 1),
and if these are calculated according to the Biot theory,
accurate results can be obtained for some undersea sedi-
ments. ' For air-filled materials, it is the P, (slow compres-
sional) wave that is most important, and a rigid porous
model, ignoring the P, and S waves, has found wide appli-
13.17.36 1f motion induced in the po-
rous medium is of interest, however, the full Biot treatment
will need to be used. Even for air-filled materials, the P,
wave will become significant as the distance from the in-
terface into the porous medium increases because of the
high P, wave’s attenuation rate.
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FIG. 7. Three-dimensional view of the energy reflection and transmission coefficients for plane wave incident on an air/air-filled sand interface. (a)--(d)
show coefficients for the reflected and for the transmitted P, P,, and S waves, respectively. Note that some of the displays have been rotated to give a

clear view of the surface.

IV. CONCLUDING REMARKS

Calculations using Biot’s theory have been used to in-
vestigate differences between water- and air-filled porous
materials. These calculations show that both materials
have P, and S wave velocities that are essentially frequency
independent, with a P, velocity that increases at low fre-
quencies and levels off at a constant value at high frequen-
cies. The fast and shear wave attenuations have some fre-
quency dependence for water-filled sand but are constant
for air-filled sand, while the slow compressional wave at-
tenuation decreases with frequency for both materials. The
slow compressional wave’s fluid/solid coupling coeficient
is around 2 for water-filled materials, but greater than 300
for air-filled materials, implying that the wave motion is
decoupled from the solid when the saturating fluid is air.

Major differences were found for plane wave transmis-
sion into the two types of porous materials. For water-filled
media, transmission to P, waves is the most important,
while for air-filled media, transmission to P, waves is the
largest. These differences naturally lead to quite different
approximation methods for the two cases.
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Additional experimental work is planned to confirm
these calculations. Sonic velocity and attenuation measure-
ments on various porous materials as a function of fre-
quency are planned in conjunction with permeability mea-
surements; these measurements will be used to validate
these calculations.
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